Passer à Pro
Continuer vers le site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Calculateur d'intégrale
Calculateur d'une dérivée
Calculateur d'algèbre
Calculateur d'une matrice
Plus...
Graphisme
Graphique linéaire
Graphique exponentiel
Graphique quadratique
Graphique sinusoïdal
Plus...
Calculateurs
Calculateur d'IMC
Calculateur d'intérêts composés
Calculateur de pourcentage
Calculateur d'accélération
Plus...
Géométrie
Calculateur du théorème de Pythagore
Calculateur de l'aire d'un cercle
Calculatrice de triangle isocèle
Calculateur de triangles
Plus...
Outils
Bloc-note
Groupes
Aides-mémoire
Des feuilles de calcul
Guides d'étude
Exercices
Vérifier la solution
fr
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Mise à niveau
Problèmes courants
Sujets
Pré-algèbre
Algèbre
Problèmes de mots
Functions & Graphing
Géométrie
Trigonométrie
Pré-calcul
Calcul
Statistiques
Problèmes Trigonométrie courants
prouver ((cot(x)))/((csc(x)))=cos(x)
prove
(
cot
(
x
)
)
(
csc
(
x
)
)
=
cos
(
x
)
prouver ((sec^2(t)))/(sec^2(t)-1)=csc^2(t)
prove
(
sec
2
(
t
)
)
sec
2
(
t
)
−
1
=
csc
2
(
t
)
prouver sin^2(x)=cos(2x)+2
prove
sin
2
(
x
)
=
cos
(
2
x
)
+
2
prouver 1+cos^2(x)=2-sin^2(x)
prove
1
+
cos
2
(
x
)
=
2
−
sin
2
(
x
)
prouver sin^2(x)=cos(2x)-2
prove
sin
2
(
x
)
=
cos
(
2
x
)
−
2
prouver (tan(θ)cot(θ))/(cos(θ))=sec(θ)
prove
tan
(
θ
)
cot
(
θ
)
cos
(
θ
)
=
sec
(
θ
)
prouver 2(cos(θ-1))^2=cos^4(θ)-sin^4(θ)
prove
2
(
cos
(
θ
−
1
)
)
2
=
cos
4
(
θ
)
−
sin
4
(
θ
)
prouver cos(x)= 15/17
prove
cos
(
x
)
=
1
5
1
7
prouver csc(A)-sin(A)=(cos(A))(cot(A))
prove
csc
(
A
)
−
sin
(
A
)
=
(
cos
(
A
)
)
(
cot
(
A
)
)
prouver (cos^2(x))/(cos^2(x))=1
prove
cos
2
(
x
)
cos
2
(
x
)
=
1
prouver (1-sec(x))/(csc(x))=cos(x)(cot(x))
prove
1
−
sec
(
x
)
csc
(
x
)
=
cos
(
x
)
(
cot
(
x
)
)
prouver csc(x)tan(x)sec(x)=sec^2(x)
prove
csc
(
x
)
tan
(
x
)
sec
(
x
)
=
sec
2
(
x
)
prouver tan(x)sec^4(x)=(sin(x))/(cos^5(x))
prove
tan
(
x
)
sec
4
(
x
)
=
sin
(
x
)
cos
5
(
x
)
prouver csc(x)+cot(x)sec(x)-1=tan(x)
prove
csc
(
x
)
+
cot
(
x
)
sec
(
x
)
−
1
=
tan
(
x
)
prouver (3csc(x)-3sin(x))/(tan(x)-cot(x))=3cos^3(x)
prove
3
csc
(
x
)
−
3
sin
(
x
)
tan
(
x
)
−
cot
(
x
)
=
3
cos
3
(
x
)
prouver 9cos(x)+6sin(x)=10
prove
9
cos
(
x
◦
)
+
6
sin
(
x
◦
)
=
1
0
prouver (tan^2(A))/(sec^2(A))=sin^2(A)
prove
tan
2
(
A
)
sec
2
(
A
)
=
sin
2
(
A
)
prouver 5cos^2(x)-2cos(x)-3-sin^2(x)=0
prove
5
cos
2
(
x
)
−
2
cos
(
x
)
−
3
−
sin
2
(
x
)
=
0
prouver cos^4(a)+1-sin^4(a)=2cos^2(a)
prove
cos
4
(
a
)
+
1
−
sin
4
(
a
)
=
2
cos
2
(
a
)
prouver 3-4cos^2(x)=(2sin(x)+1)(2sin(x)-1)
prove
3
−
4
cos
2
(
x
)
=
(
2
sin
(
x
)
+
1
)
(
2
sin
(
x
)
−
1
)
prouver csc^2(θ)=(1/(sin(θ)))^2
prove
csc
2
(
θ
)
=
(
1
sin
(
θ
)
)
2
prouver (1+tan(x))/(1+1/(tan(x)))=tan(x)
prove
1
+
tan
(
x
)
1
+
1
tan
(
x
)
=
tan
(
x
)
prouver cos(2θ)= 1/(sec(2θ))
prove
cos
(
2
θ
)
=
1
sec
(
2
θ
)
prouver (cos(3x)-cos(x))=-2sin(2x)sin(x)
prove
(
cos
(
3
x
)
−
cos
(
x
)
)
=
−
2
sin
(
2
x
)
sin
(
x
)
prouver sec(pi/2-y)=csc(y)
prove
sec
(
π
2
−
y
)
=
csc
(
y
)
prouver cos(2x-pi/2)=cos(pi/2-2x)
prove
cos
(
2
x
−
π
2
)
=
cos
(
π
2
−
2
x
)
prouver sin(pi/2-x)cot(pi/2+x)=-sin(x)
prove
sin
(
π
2
−
x
)
cot
(
π
2
+
x
)
=
−
sin
(
x
)
prouver cos(x)*csc(x)*tan(x)=1
prove
cos
(
x
)
·
csc
(
x
)
·
tan
(
x
)
=
1
prouver cos^2(x) 1/(cos^2(x))=1
prove
cos
2
(
x
)
1
cos
2
(
x
)
=
1
prouver (sin((4pi)/3))=-(sqrt(3))/2
prove
(
sin
(
4
π
3
)
)
=
−
√
3
2
prouver sec(x)-sin^2(x)=cos(x)
prove
sec
(
x
)
−
sin
2
(
x
)
=
cos
(
x
)
prouver cot^2(x)=csc^2(x)(1-sin^2(x))
prove
cot
2
(
x
)
=
csc
2
(
x
)
(
1
−
sin
2
(
x
)
)
prouver (cos(2θ))/(-sin^2(θ))=cos^2(θ)
prove
cos
(
2
θ
)
−
sin
2
(
θ
)
=
cos
2
(
θ
)
prouver sin(x)+cot(x)(cos(x))=csc(x)
prove
sin
(
x
)
+
cot
(
x
)
(
cos
(
x
)
)
=
csc
(
x
)
prouver 1/(csc(x)-1)=(sin(x))/1
prove
1
csc
(
x
)
−
1
=
sin
(
x
)
1
prouver sec(θ)cos(θ)csc(θ)=cot(θ)
prove
sec
(
θ
)
cos
(
θ
)
csc
(
θ
)
=
cot
(
θ
)
prouver csc^2(x)(1-cos^2(x))=tan(420)
prove
csc
2
(
x
)
(
1
−
cos
2
(
x
)
)
=
tan
(
4
2
0
◦
)
prouver cos(θ+30)-sin(θ+60)=-sin(θ)
prove
cos
(
θ
+
3
0
◦
)
−
sin
(
θ
+
6
0
◦
)
=
−
sin
(
θ
)
prouver tan(a)*cot(a)=sin^2(a)+cos^2(a)
prove
tan
(
a
)
·
cot
(
a
)
=
sin
2
(
a
)
+
cos
2
(
a
)
prouver tan(x)+(cos(x))/(1-sin(x))=sec(x)
prove
tan
(
x
)
+
cos
(
x
)
1
−
sin
(
x
)
=
sec
(
x
)
prouver sin(x)cos(x)=tan(x)
prove
sin
(
x
)
cos
(
x
)
=
tan
(
x
)
prouver cot((15pi)/8)=cot((7pi)/8)
prove
cot
(
1
5
π
8
)
=
cot
(
7
π
8
)
prouver sin^4(x)=(sin^2(x))^2
prove
sin
4
(
x
)
=
(
sin
2
(
x
)
)
2
prouver sin(2x)-cos(2x)= 1/2
prove
sin
(
2
x
)
−
cos
(
2
x
)
=
1
2
prouver cos^{(2)}(θ)(1+tan^{(2)}(θ))=1
prove
cos
(
2
)
(
θ
)
(
1
+
tan
(
2
)
(
θ
)
)
=
1
prouver 1-2sin^2(y)+sin^4(y)=cos^4(y)
prove
1
−
2
sin
2
(
y
)
+
sin
4
(
y
)
=
cos
4
(
y
)
prouver (sin(x)+cos(x))^2-2sin(x)cos(x)=1
prove
(
sin
(
x
)
+
cos
(
x
)
)
2
−
2
sin
(
x
)
cos
(
x
)
=
1
prouver (1-sin(3a))(sin(3a)+1)=cos^2(3a)
prove
(
1
−
sin
(
3
a
)
)
(
sin
(
3
a
)
+
1
)
=
cos
2
(
3
a
)
prouver (sin(x))/(1+cos(2x))=tan(x)
prove
sin
(
x
)
1
+
cos
(
2
x
)
=
tan
(
x
)
prouver sec(t)(csc(t)(tan(t)+cot(t)))=sec^2(t)+csc^2(t)
prove
sec
(
t
)
(
csc
(
t
)
(
tan
(
t
)
+
cot
(
t
)
)
)
=
sec
2
(
t
)
+
csc
2
(
t
)
prouver (1+sin(x))^2+cos^2(x)=2+2sin(x)
prove
(
1
+
sin
(
x
)
)
2
+
cos
2
(
x
)
=
2
+
2
sin
(
x
)
prouver cot(60)=(cos(60))/(sin(60))
prove
cot
(
6
0
◦
)
=
cos
(
6
0
◦
)
sin
(
6
0
◦
)
prouver tan(-x)tan(pi/2-x)=-1
prove
tan
(
−
x
)
tan
(
π
2
−
x
)
=
−
1
prouver tan(pi-θ)=-tan(x)
prove
tan
(
π
−
θ
)
=
−
tan
(
x
)
prouver cot(θ)(sin(θ)+tan(θ))=cos(θ)+1
prove
cot
(
θ
)
(
sin
(
θ
)
+
tan
(
θ
)
)
=
cos
(
θ
)
+
1
prouver (2-sin^2(x))csc^2(x)=cot^2(x)
prove
(
2
−
sin
2
(
x
)
)
csc
2
(
x
)
=
cot
2
(
x
)
prouver 1/(tan(A))+tan(A)= 2/(sin(2A))
prove
1
tan
(
A
)
+
tan
(
A
)
=
2
sin
(
2
A
)
prouver 1+sin(θ)=cos(θ)
prove
1
+
sin
(
θ
)
=
cos
(
θ
)
prouver 1+((tan^2(x)))/(1+sec(x))=sec(x)
prove
1
+
(
tan
2
(
x
)
)
1
+
sec
(
x
)
=
sec
(
x
)
prouver csc^2(x)*cos^2(x)=cot^2(x)
prove
csc
2
(
x
)
·
cos
2
(
x
)
=
cot
2
(
x
)
prouver 1/(sec^3(x)cos^4(x))=sec(x)
prove
1
sec
3
(
x
)
cos
4
(
x
)
=
sec
(
x
)
prouver csc^2(θ)+1=cot^2(θ)
prove
csc
2
(
θ
)
+
1
=
cot
2
(
θ
)
prouver 1+tan^2(B)=sec^2(B)
prove
1
+
tan
2
(
B
)
=
sec
2
(
B
)
prouver cos^2(7θ)-sin^2(7θ)=cos(14θ)
prove
cos
2
(
7
θ
)
−
sin
2
(
7
θ
)
=
cos
(
1
4
θ
)
prouver sin^4(x)-(3/(4*sin^2(x)))+1=1
prove
sin
4
(
x
)
−
(
3
4
·
sin
2
(
x
)
)
+
1
=
1
prouver arccot(x)=tan(x)
prove
arccot
(
x
)
=
tan
(
x
)
prouver cot(θ)+tan(θ)=sec(θ)+csc(θ)
prove
cot
(
θ
)
+
tan
(
θ
)
=
sec
(
θ
)
+
csc
(
θ
)
prouver 2sin(θ)+sin(2θ)=0
prove
2
sin
(
θ
)
+
sin
(
2
θ
)
=
0
prouver cos^2(x)+cos(x)-1+sin^2(x)=cos(x)
prove
cos
2
(
x
)
+
cos
(
x
)
−
1
+
sin
2
(
x
)
=
cos
(
x
)
prouver (2sin(x)cos(x))/(cos(x))=2
prove
2
sin
(
x
)
cos
(
x
)
cos
(
x
)
=
2
prouver tan(x-(3pi)/2)=-cot(x)
prove
tan
(
x
−
3
π
2
)
=
−
cot
(
x
)
prouver sin(θ)(cos^2(θ))/(sin(θ))=csc(θ)
prove
sin
(
θ
)
cos
2
(
θ
)
sin
(
θ
)
=
csc
(
θ
)
prouver (tan^2(a)+1)/(sec(a))=sec(a)
prove
tan
2
(
a
)
+
1
sec
(
a
)
=
sec
(
a
)
prouver 1/(tan(β)+cot(β))=sin(β)cos(β)
prove
1
tan
(
β
)
+
cot
(
β
)
=
sin
(
β
)
cos
(
β
)
prouver cos(300)=1-2sin^2(150)
prove
cos
(
3
0
0
◦
)
=
1
−
2
sin
2
(
1
5
0
◦
)
prouver csc^2(x)+3cot^2(x)-5=4(cot(x)-1)
prove
csc
2
(
x
)
+
3
cot
2
(
x
)
−
5
=
4
(
cot
(
x
)
−
1
)
prouver (3)((cos(2z))^2)/2 =(3cos(4z))/4
prove
(
3
)
(
cos
(
2
z
)
)
2
2
=
3
cos
(
4
z
)
4
prouver-2sin^2(x)+cos(x)+1=0
prove
−
2
sin
2
(
x
)
+
cos
(
x
)
+
1
=
0
prouver (2cot(u))/(csc^2(u)-2)=tan(2u)
prove
2
cot
(
u
)
csc
2
(
u
)
−
2
=
tan
(
2
u
)
prouver csc(2x)+cot(2x)=(1+cos(2x))/(sin(2x))
prove
csc
(
2
x
)
+
cot
(
2
x
)
=
1
+
cos
(
2
x
)
sin
(
2
x
)
prouver 1-2sin^2(t)=2cos^2(t)-1
prove
1
−
2
sin
2
(
t
)
=
2
cos
2
(
t
)
−
1
prouver 1/(cos^2(θ))=sec^2(θ)
prove
1
cos
2
(
θ
)
=
sec
2
(
θ
)
prouver-cos(2t)sin(2t)+sin(2t)cos(2t)+0=0
prove
−
cos
(
2
t
)
sin
(
2
t
)
+
sin
(
2
t
)
cos
(
2
t
)
+
0
=
0
prouver (tan(θ)sin(θ))/(sec(θ)-1)=1+cos(θ)
prove
tan
(
θ
)
sin
(
θ
)
sec
(
θ
)
−
1
=
1
+
cos
(
θ
)
prouver 1-2sin^2(x)=-1+cos^2(x)
prove
1
−
2
sin
2
(
x
)
=
−
1
+
cos
2
(
x
)
prouver (sin(x)sin(x))/(cos(x))=cos(x)
prove
sin
(
x
)
sin
(
x
)
cos
(
x
)
=
cos
(
x
)
prouver (cos(x))/5 = 1/5*cos(x)
prove
cos
(
x
)
5
=
1
5
·
cos
(
x
)
prouver (1+tan(x))/(sec(x))=cos(x)+sin(x)
prove
1
+
tan
(
x
)
sec
(
x
)
=
cos
(
x
)
+
sin
(
x
)
prouver (sin(4x))/4 =(sin(x)cos(x))/2
prove
sin
(
4
x
)
4
=
sin
(
x
)
cos
(
x
)
2
prouver (sin(x)tan(x))/(cos(x)+1)=sec(x)-1
prove
sin
(
x
)
tan
(
x
)
cos
(
x
)
+
1
=
sec
(
x
)
−
1
prouver sin(a+b)-sin(a-b)=2sin(a)sin(b)
prove
sin
(
a
+
b
)
−
sin
(
a
−
b
)
=
2
sin
(
a
)
sin
(
b
)
prouver sec(x)+1=(tan^2(x))/(sec(x)-1)
prove
sec
(
x
)
+
1
=
tan
2
(
x
)
sec
(
x
)
−
1
prouver (sin(x))/(1-cos^2(x))=cos(x)
prove
sin
(
x
)
1
−
cos
2
(
x
)
=
cos
(
x
)
prouver sin^2(x)-cos^2(x)=2(sin^2(x))-1
prove
sin
2
(
x
)
−
cos
2
(
x
)
=
2
(
sin
2
(
x
)
)
−
1
prouver sin^2(3x)=9sin^3(x)cos^3(x)
prove
sin
2
(
3
x
)
=
9
sin
3
(
x
)
cos
3
(
x
)
prouver sin^2(x)+cos(-2x)=cos^2(x)
prove
sin
2
(
x
)
+
cos
(
−
2
x
)
=
cos
2
(
x
)
prouver sin(pi/2+a)=cos(a)
prove
sin
(
π
2
+
a
)
=
cos
(
a
)
prouver 2sin^2(x)-cos(x)-2=0
prove
2
sin
2
(
x
)
−
cos
(
x
)
−
2
=
0
prouver csc(t)-sin(t)=cot(t)*cos(t)
prove
csc
(
t
)
−
sin
(
t
)
=
cot
(
t
)
·
cos
(
t
)
prouver (tan(θ)+6)/(sec(θ))=6cos(θ)+sin(θ)
prove
tan
(
θ
)
+
6
sec
(
θ
)
=
6
cos
(
θ
)
+
sin
(
θ
)
1
..
215
216
217
218
219
..
345